Saturday, November 29, 2014

Latihan Soal Integral

Pembahasan Latihan Soal Integral (1) UN SMA

 
 
 
 
 
 
21 Votes

  1. Diketahui \int_a^3 (3x2 + 2x + 1) dx = 25 Nilai \frac{1}{2} a = …
    A. – 4
    B. – 2
    C. – 1
    D. 1
    E. 2
    PEMBAHASAN :
    \int_a^3 (3x2 + 2x + 1) dx = x3 + x2 + x \mid_a^3
    25 = (33 + 32 + 3) – (a3 + a2 + a)
    a3 + a2 + a = 27 + 9 + 3 – 25
    a3 + a2 + a – 14 = 0
    (a – 2)(a2 + a + 7) = 0
    a = 2 atau a2 + a + 7 = 0
    jadi \frac{1}{2} a = 1
    JAWABAN : D
  2. Nilai \int_0^\pi sin 2x cos x dx = …
    A. -4/3
    B. -1/3
    C. 1/3
    D. 2/3
    E. 4/3
    PEMBAHASAN :
    \int_0^\pi sin 2x cos x dx = \int_0^\pi 2 sin x cos x cos x dx
    = \int_0^\pi 2 sin x cos2 x dx
    misal u = cos x \Rightarrow du = -sin x dx
    = \int_0^\pi 2 u2 (-du)
    = -\frac{1}{3} u3 \mid_0^\pi
    Substitusi u = cos x
    = -\frac{1}{3} cos3 x \mid_0^\pi
    = -\frac{1}{3} cos3 (\pi) + \frac{1}{3} cos3 0
    = -\frac{1}{3} (-1)3 + \frac{1}{3} .13
    = \frac{1}{3} + \frac{1}{3}
    = \frac{2}{3}
    JAWABAN : D
  3. Hasil dari \int_0^1 3x\sqrt{3x^2+1} dx = …
    A. 7/2
    B. 8/3
    C. 7/3
    D. 4/3
    E. 2/3
    PEMBAHASAN :
    \int_0^1 3x\sqrt{3x^2+1} dx = …
    misal u = 3x2 + 1 \Rightarrow du = 6x dx
    = \int_0^1 \sqrt{u} \frac{du}{2}
    = \int_0^1 \frac{1}{2} u1/2 du
    = \frac{1}{2} .\frac{2}{3} u3/2 \mid_0^1
    substitusi u = 3x2 + 1, sehingga diperoleh
    = \frac{1}{3} (3x2 + 1)3/2 \mid_0^1
    = \frac{1}{3} (3.12 + 1)3/2\frac{1}{3} (3.02 + 1)3/2
    = \frac{1}{3} 8 – \frac{1}{3} .1
    = \frac{7}{3}
    JAWABAN : C
  4. Hasil dari \int cos5 x dx = …
    A. -\frac{1}{6} cos6 x sin x + C
    B. \frac{1}{6} cos6 x sin x + C
    C. –sin x + \frac{2}{3} sin3 x + \frac{1}{5} sin5 x + C
    D. sin x – \frac{2}{3} sin3 x + \frac{1}{5} sin5 x + C
    E. sin x + \frac{2}{3} sin3 x + \frac{1}{5} sin5 x + C
    PEMBAHASAN :
    \int cos5 x dx = \int cos x (cos2 x)2 dx
    = \int cos x (1 – sin2 x)2 dx
    = \int cos x (1 – 2 sin2 x + sin4 x) dx
    misal u = sin x \Rightarrow du = cos x
    = \int (1 – 2u2 + u4) du
    = u – \frac{2}{3} u3 + \frac{1}{5} u5 + C
    substitusi u = sin x,
    = sin x – \frac{2}{3} sin3 x + \frac{1}{5} sin5 x + C
    JAWABAN : D
  5. Hasil dari \int cos x (x2 + 1) dx = …
    A. x2 sin x + 2x cos x + C
    B. (x2 – 1)sin x + 2x cos x + C
    C. (x2 + 3)sin x – 2x cos x + C
    D. 2x2 cos x + 2x2 sin x + C
    E. 2x sin x – (x2 – 1)cos x + C
    PEMBAHASAN :
    dalam penyelesaian soal ini akan menggunakan Integral Parsial
    u = x2 + 1 \Rightarrow du = 2x dx
    dv = cos x dx \Rightarrow v = sin x
    \int u dv = uv – \int v du
    = sin x (x2 + 1) – \int sin x 2x dx
    parsial lagi
    m = 2x \Rightarrow dm = 2 dx
    dn = sin x dx \Rightarrow n = -cos x
    = sin x (x2 + 1) – (2x (-cos x) – \int -cos x 2 dx)
    = sin x (x2 + 1) – (-2x cos x + 2 sin x) + C
    = sin x (x2 + 1) + 2x cos x – 2 sin x + C
    = sin x (x2 – 1) + 2x cos x + C
    JAWABAN : B
  6. Diketahui \int_p^3 (3x2 – 2x + 2) dx = 40. Nilai \frac{1}{2} p = …
    A. 2
    B. 1
    C. – 1
    D. – 2
    E. – 4
    PEMBAHASAN :
    \int_p^3 (3x2 – 2x + 2) dx = x3 – x2 + 2x \mid_p^3
    40 = (33 – 32 + 6) – (p3 – p2 + 2p)
    p3 – p2 + 2p = 27 – 9 + 6 – 40
    p3 – p2 + 2p + 16 = 0
    (p + 2)(p2 + p + 7) = 0
    p = -2 atau p2 + p + 7 = 0
    jadi \frac{1}{2} p = -1
    JAWABAN : C
  7. Hasil dari \int_0^{\frac{\pi}{2}} sin 3x cos 5x dx = …
    A. -10/6
    B. -8/10
    C. -5/16
    D. -4/16
    E. 0
    PEMBAHASAN :
    \int_0^{\frac{\pi}{2}} sin 3x cos 5x dx = \int_0^{\frac{\pi}{2}} \frac{1}{2} [sin 8x + sin (-2x)] dx
    = \int_0^{\frac{\pi}{2}} \frac{1}{2} sin 8x dx – \int_0^{\frac{\pi}{2}} \frac{1}{2} sin 2x dx
    misal u = 8x \Rightarrow du = 8 dx
    v = 2x \Rightarrow dv = 2 dx
    = \int_0^{\frac{\pi}{2}} \frac{1}{2} sin u \frac{du}{8} \int_0^{\frac{\pi}{2}} \frac{1}{2} sin v \frac{dv}{2}
    = -\frac{1}{16} cos u \mid_0^{\frac{\pi}{2}} + \frac{1}{4} cos v \mid_0^{\frac{\pi}{2}}
    substitusi u = 8x dan v = 2x
    = -\frac{1}{16} cos 8x \mid_0^{\frac{\pi}{2}} + \frac{1}{4} cos 2x \mid_0^{\frac{\pi}{2}}
    = [-\frac{1}{16} (cos 8(\frac{\pi}{2}) – cos 8(0))] + [\frac{1}{4} (cos 2(\frac{\pi}{2}) – cos 2(0))]
    = [-\frac{1}{16} (1 – 1)] + [\frac{1}{4} (-1 – 1)]
    = -\frac{1}{2}
    JAWABAN :
  8. \int_0^\pi x sin x dx = …
    A. \frac{\pi}{4}
    B. \frac{\pi}{3}
    C. \frac{\pi}{2}
    D. \pi
    E. \frac{3\pi}{2}
    PEMBAHASAN :
    dalam penyelesaian soal ini akan menggunakan Integral Parsial
    u = x \Rightarrow du = dx
    dv = sin x dx \Rightarrow v = -cos x
    \int u dv = uv – \int v du
    = -x cos x – \int (-cos x) dx
    = [-x cos x + sin x] \mid_0^\pi
    = [-\pi cos (\pi) + sin (\pi)] – [-0 cos 0 + sin 0]
    = -\pi (-1)
    = \pi
    JAWABAN : D
  9. Nilai \int_0^{\frac{\pi}{2}} (2x + sin x) dx = …
    A. \frac{1}{4}\pi^2 – 1
    B. \frac{1}{4}\pi^2
    C. \frac{1}{4}\pi^2 + 1
    D. \frac{1}{2}\pi^2 – 1
    E. \frac{1}{2}\pi^2 + 1
    PEMBAHASAN :
    \int_0^{\frac{\pi}{2}} (2x + sin x) dx = x2 – cos x \mid_0^{\frac{\pi}{2}}
    = ((\frac{\pi}{2})2 – cos (\frac{\pi}{2})) – (02 – cos 0)
    = (\frac{\pi^2}{4} – 0) – (02 – 1)
    = \frac{\pi^2}{4} + 1
    JAWABAN : C
  10. Nilai \int x sin(x2 + 1) dx = …
    A. –cos (x2 + 1) + C
    B. cos (x2 + 1) + C
    C. –½ cos (x2 + 1) + C
    D. ½ cos (x2 + 1) + C
    E. –2cos (x2 + 1) + C
    PEMBAHASAN :
    misal u = x2 + 1 \Rightarrow du = 2x dx
    \int x sin(x2 + 1) dx = \int sin u \frac{du}{2}
    = -\frac{1}{2} cos u + C
    substitusi u = x2 + 1
    = -\frac{1}{2} cos (x2 + 1) + C
    JAWABAN : C

    https://aimprof08.wordpress.com/2012/12/01/pembahasan-latihan-soal-integral-1-un-sma/

0 comments:

Post a Comment